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Random matrix ensembles defined by a mean-field one body plus a chaos generating random tw
interaction@called embedded ensembles of (112)-body interactions# predict for wave functions, in the chaotic
domain, an essentially one-parameter Gaussian forms for the energy dependence of the number of p
components~NPC! and the localization lengthl H ~defined by information entropy!, which are two important
measures of chaos in finite interacting many-particle systems. Numerical embedded ensemble calculati
nuclear shell-model results, for NPC andl H , are compared with the theory. These analyses clearly point
that for realistic finite interacting many-particle systems, in the chaotic domain, wave-function structu
given by (112)-body embedded random matrix ensembles.
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I. INTRODUCTION

In the last few years, the study of quantum chaos in is
lated finite interacting particle systems has shifted from sp
tral statistics to properties of wave functions and transiti
strengths~for example, electromagnetic and Gamow-Tell
transition strengths in atomic nuclei, dipole strengths in
oms, etc.!. Working in this direction, several research grou
have recognized recently that the two-body random ma
ensembles and their various extended versions form g
models for understanding various aspects of chaos in in
acting particle systems@1#. In particular, using the so-called
embedded Gaussian orthogonal ensemble of (112)-body in-
teractions@EGOE~112!# defined by a mean-field one bod
plus a chaos generating random two-body interaction, th
are now several studies on the nature of occupancies
single-particle states, strength functions~or local density of
states!, information entropy, transition strength sums, a
transition-matrix elements of one-body transition operato
Fock-space localization, etc., in the chaotic domain of int
acting particle systems such as atoms@2#, nuclei@1,3#, quan-
tum dots@4#, quantum computers@5#, and so on. Reference
@1# gives a recent overview of this subject. The focus in t
present article is on two important measures of localizat
~in wave functions and transition strength distributions!: ~i!
number of principal components~NPC! @or the inverse par-
ticipation ratio ~IPR!#; ~ii ! localization lengthl H as defined
by the information entropy (Sin f o). It is well established that
the NPC in wave functions characterizes various layers
chaos in interacting particle systems@6#. In addition, for sys-
tems such as atomic nuclei, NPC for transition strengths
measure of fluctuations in transition strength sums. Sim
larly, the role ofl H in quantum chaos studies is well emph
sized by Izrailev@7# and more significantly, using nuclea
physics examples@8#, it is well demonstrated that the wave
function entropySin f o coincides with the thermodynamic en
tropy for many-particle systems with two-body interactio
of sufficient strength but only in the presence of a mean fie
i.e., in the chaotic domain but with a mean field — therefo
the significance of EGOE(112). Clearly, deriving the pre-
dictions of EGOE(112) for NPC andl H are of considerable
001/64~1!/016219~8!/$20.00 64 0162
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importance. This problem was addressed in Refs.@9,10#. In
@9# results for NPC in wave functions, in the so-called Bre
Wigner ~BW! domain, are derived. On the other hand,
@10# results in the so-called Gaussian domain~the BW and
Gaussian domains are defined in Sec. II ahead! are derived
for NPC andl H in transition strength distributions with onl
the final results mentioned for wave functions. The purp
of the present paper is to give a detailed derivation of
results mentioned in@10# for NPC andl H in wave functions
and subject them to numerical tests. Now we will give
preview.

Section II gives some of the basic results for EGOE
12). In Sec. III, formulas for NPC andl H in wave functions
are derived by exploiting the Gaussian nature and the a
ciated properties of strength functions in EGOE(112). Nu-
merical tests of the theory are given in Sec. IV. Finally, S
V gives concluding remarks.

II. BASIC RESULTS FOR „1¿2…-BODY RANDOM
MATRIX ENSEMBLES

Given m fermions inN single-particle states, assuming
the outset that the many-particle spaces are direct pro
spaces of the single-particle states, two-body random ma
ensembles~usually called TBRE! are generated by definin
the HamiltonianH, which is two-body, to be a random ma
trix in the two-particle spaces and then propagating it to
(m

N) dimensionalm-particle spaces by using their geomet
~direct product structure!; often one considers a GOE repr
sentation in the two-particle spaces and then the TBRE
called EGOE~2!; see@1# for more details. For a EGOE~2!,
with N@m@2, the normalized state densityr(E)5^d(H
2E)& takes Gaussian form and it is defined by its centr
e5^H& and variances25^(H2e)2&. In order to explicitly
state that the state density is generated by the HamiltoniaH,
sometimesr(E) is denoted asrH(E) and similarlye aseH
and s as sH . Note that the averageŝr & are over the
m-particle spaces; in the nuclear physics examples, they
usually over them-particle spaces with fixed angular mo
mentum~J! and isospin~T! which are good quantum num
bers. Just as the state density, given a transition operatoO,
©2001 The American Physical Society19-1
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FIG. 1. Strength functionsFk(E), Dyson-MehtaD̄3 statistic for level fluctuations and occupancies^Euni uE& for EGOE(112) for various
values of the interaction strengthl in $H%5h(1)1l$V(2)% for a system of 7 fermions in 14 single particle states~due to computationa
constraints, here, only one member is considered just as in@12#!; the matrix dimension is 3432. The single-particle energies used in
calculations aree i5( i 11/i ),i 51,2, . . . ,14just as in@12#. ~a! The histograms are EGOE(112) results for the strength functions, continuo
curves are BW fit and the dotted curves are Gaussian forl<0.1 and Edgeworth corrected Gaussian@16# for l.0.1. In constructing the

strength functions,uCk
Eu2 are summed over the basis statesuk& in the energy windowÊk6D and then the ensemble averagedFÊk

(Ê) vs Ê

is constructed as a histogram; the value ofD is chosen to be 0.025 forl<0.1 and beyond thisD50.1. Here,Êk5(Ek2eH)/sH and in the

figure Êk50. Note that forlFk
;0.2, there is BW to Gaussian transition.~b! The D̄3(L) statistic for overlapping intervals of lengthL

<40 are compared with Poisson and GOE values. Forl;0.06, there is a Poisson to GOE transition in theD̄3 statistic.~c! The wavy curves
are numerical EGOE(112) results for occupancies and the smoothed curves withl>0.06 correspond to the results of EGOE~2! theory
~ratio of Gaussians!. Note that forl,0.06, there are wide fluctuations in occupancies and the smoothed forms here are meaningless
results are shown for the lowest six single-particle states. Results similar to those in the figure, for theN512,m56 case, are reported in@1#.
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the normalized bivariate strength densities~matrix elements
of O weighted by the state densities at the initial and fi
energies! rbiv;O(Ei ,Ef)5@^O †O&#21^O †d(H2Ef)Od(H
2Ei)& take bivariate Gaussian form for EGOE~2! and it is
defined by the centroids (e i ,e f) and widths (s i ,s f) of its
two marginals and the bivariate correlation coefficient tha
given by ^O †@(H2e f)/s f #O@(H2e i)/s i #&/^O †O&. Third,
the level and strength fluctuations follow GOE. Moreov
with the Gaussian form for the state densities and bivar
Gaussian form for the strength densities, the strength s
^EuO †OuE&5(E8u^E8uOuE&u2 take the form of ratio of two
Gaussians, ^EuO †OuE&5^O †O&rO †O:G(E)/rG(E)
where rO †O:G(E)5^O †Od(H2E)& is defined by its
centroid eO †O5^O †OH&/^O †O& and variance sO †O

2

5^O †OH2&/^O †O&2eO †O
2 ; G stands for Gaussian.

Hamiltonians for realistic interacting particle system
contain a mean-field part@one-body parth(1)# and a two-
body residual interactionV(2) mixing the configurations
built out of the distribution of particles in the mean-fie
single-particle states;h(1) is defined by the single-particl
energiese i ,i 51,2, . . . ,N and V(2) is defined by its two-
particle matrix elements. Then it is more realistic to u
EGOE(112), the embedded Gaussian orthogonal ensem
01621
l

e
s

le

of random matrices of (112)-body Hamiltonians where
$H%5h(1)1l$V(2)%; sometimes it is more convenient
useah(1)1l$V(2)%. Here,$ % denotes ensemble,l anda
are free parameters andV(2) in the two-particle spaces is
GOE with unit matrix elements variance; note that in g
eral,h(1) need not be fixed norV(2) a GOE~in this general,
case, the ensemble is simply called the embedded ense
of ~112!-body interactions@EE~112!#; see@1# for more de-
tails!. At this stage, it is important to stress that all t
EGOE~2! results mentioned before are indeed applicable
EGOE(112) but only in the domain of chaos. Given (m,N)
and the average spacingD @generated byh(1)# of the single-
particle states~without loss of generality one can putD
51) it is possible to find the criticall valuelc such that for
l>lc there is the onset of chaos~GOE level fluctuations! in
many (m@1) particle spaces. In fact,lc is of the order of
the spacing betweenm-particle mean-field basis states th
are directly coupled by the two-body interaction; see the s
ond and third reference in@4#. For l.lc , for example, it is
well established that the transition strength sums
EGOE(112) follow the EGOE~2! forms; see Fig. 1~c!
ahead. References.@1,11# give many numerical examples fo
this, drawn from EGOE(112), and more importantly, fo
9-2
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STRUCTURE OF WAVE FUNCTIONS IN (112)-BODY . . . PHYSICAL REVIEW E 64 016219
atomic nuclei in several parts of the periodic table~detailed
discussion of the nuclear physics examples is given in
last reference of@11#!. It should be mentioned that th
Gausian forms of state and transition strength densities
used in@10# to derive simple formulas for NPC andl H in
transition strength distributions.

For deriving formulas for NPC andl H in wave functions,
most useful quantity is the strength function~or local density
of states! Fk(E). Given the mean-field basis statesuk& with
energiesEk5^kuHuk&, the eigenstatesuE& can be expanded
as uE&5(kCk

Euk&. Then the strength functionFk(E)5^d(H

2E)&k5(E8uCk
E8u2d(E2E8) and therefore it gives informa

tion about the structure of the eigenfunctions. In order
proceed further, let us say that theEk energies are generate
by a HamiltonianHk ~the structure ofHk is discussed ahead!.
With this, it is easy to identifyFk(E) as a conditional density
of the bivariate densityrbiv(E,Ek)5^d(H2E)d(Hk2Ek)&.
Taking degeneracies ofE and Ek energies into account we
have,

rbiv~E,Ek!5^d~H2E!d~Hk2Ek!&5~1/d! (
aPk,bPE

uCk,a
E,bu2

5~1/d!uCk
Eu2@drH~E!#@drHk~Ek!#

⇒

Fk~E!5rbiv~E,Ek!/r
Hk~Ek!

uCk
Eu25rbiv~E,Ek!/@drH~E!rHk~Ek!#. ~1!

In Eq. ~1!, d stands for the dimensionality of them-particle

spaces anduCk
Eu2 is the average ofuCk

Eu2 over all the degen-
erate states. Let us now examine the structure ofHk and
rbiv(E,Ek). First, it should be noted that the two-body inte
action V(2) can be decomposed into two partsV(2)5V[0]

1V so thath(1)1V[0] generates theEk energies~diagonal
matrix elements ofH in the m-particle mean-field basis
states!. With m particles inN single-particle states, there is
U(N) group and with respect to this groupV[0] contains a
scalar part V[0],0 ~a function of m), an effective
(m-dependent! one-body~Hartree-Fock-like! part V[0],1 and
an irreducible two-body partV[0],2. The V[0],01V[0],1 will
add to h(1) giving an effective one-body part ofH; h(1)
→h(1)1V[0],01V[0],15h. The important point now being
that, with respect to aU(N) norm, the size ofV[0],2 is usu-
ally very small compared to the size ofh in the m-particle
spaces. With this,H5h1V and then theHk is nothing buth.
The pieceV5V(2)2V[0] generates the widths and oth
shape parameters ofFk(E). It should be added that with
respect to theU(N) normh andV are orthogonal and there
fore sH

2 5sh
21sV

2 . Definition of V[0] , a brief discussion of
its U(N) decomposition, etc., are given in the Appendix. F
EGOE(112), it is well known that the widths ofFk(E) are
in general constant; see@12# and the Appendix. The averag
variance ofFk(E)’s is given simply by
01621
e

re

sk
25sV

25~d!21 (
aÞb

z^auHub& z2,

wherea andb arem-particle mean-field basis states indice
The results,~i! the norm of theV[0],2 part is negligible and
~ii ! the widths of the strength functions are nearly consta
~with little fluctuations! are well verified in a number of ex-
amples; see@13# and references in@1# for many nuclear phys-
ics examples. EGOE(112) discussions in the literature tac
itly assume thath is h(1) andV is V(2) and the same is
assumed from now on, i.e,H5h1lV→h(1)1lV(2). In
addition to ~i! and ~ii !, it is well verified in a number of
numerical calculations that:~iii ! Fk(E)’s exhibit a transition
from BW to Gaussian form in the chaotic domain defined
l.lFk

; usuallylc,lFk
; see@1,14# for some analytical un-

derstanding of this result. The results~i!, ~ii !, and~iii ! clearly
imply that therbiv(E,Ek) is a bivariate Gaussian and thi
result was first mentioned in@15#. A numerical example for
the BW to Gaussian transition in strength functions
EGOE(112) is shown in Fig. 1~a!. In this examplelFk

;0.2 and it is much larger thanlc50.06 obtained via the
results for the Dyson-MehtaD̄3 level statistic shown in Fig.
1~b!. Thus, there is the onset of GOE fluctuations much b
fore theFk(E)’s start taking Gaussian form, i.e.,lFk

.lc .
Unlike the case with strength functions~also transition
strength densities; see@17#!, as mentioned before, strengt
sums start following the EGOE~2! form ~i.e., ratio of Gaus-
sians! from l5lc . This is demonstrated in Fig. 1~c! where
occupancieŝ Euni uE& as a function ofE are shown@they
correspond to the strength sums generated by single s
(u i &) destruction operators#. As mentioned in the Introduc-
tion, the nature of NPC~which is the inverse of IPR! in wave
functions in thelc<l,lFk

domain whereFk(E) is of BW
form ~i.e., in the BW domain! was studied in@9# while the
present article is concerned with thel.lFk

domain~i.e., the

Gaussian domain! whereFk(E) is of Gaussian form.

III. EGOE „1¿2… RESULTS FOR NPC AND l H IN WAVE
FUNCTIONS

For EGOE(112), in the chaotic domain withl.lFk
,

one has from Sec. II the results:~i! Ek are generated byHk

5h(1), therefore the variance ofrHk(Ek) is sh
2 ; ~ii ! widths

of the strength functions are constant and they are gener
by V(2), the average variancesk

25sV
2 ; ~iii ! Fk(E)’s are

Gaussian in form;~iv! Fk(E) is a conditional density of the
bivariate Gaussianrbiv:G(E,Ek). The correlation coefficient
z of rbiv:G(E,Ek) is given by,

z5
^~H2eH!~Hk2eH!&

A^~H2eH!2&^~Hk2eH!2&
5AS 12

sk
2

sH
2 D . ~2!

Note that the centroids of theE and Ek energies are both
given byeH5^H&. In Eq.~2!, the second equality is obtaine
by using the orthogonality betweenh(1) and V(2) opera-
tors. It is immediately seen that thez2 is nothing but the
9-3
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variance ofEk’s @the centroids ofFk(E)# normalized by the
state-density variance. Therbiv:G(E,Ek), which takes into
account the fluctuations in the centroids ofFk(E) and as-
sumes that the variances are constant, is used to derive
mulas for NPC andl H in the wave functions~methods of
taking into account variance fluctuations will be discuss
ahead! cE5uE& expanded in the mean-field basis defined
the statesfk5uk&. Let us first define NPC andl H ,

uE&5(
k

Ck
Euk&

⇒

~NPC!E5F(
k

UCk
EU4G21

,

l H~E!5exp@~Sin f o!E#/~0.48d!,

~Sin f o!E52(
k

uCk
Eu2lnuCk

Eu2. ~3!

In Eq. ~3! 0.48d is the GOE value forSin f o, thus,l H51 for
GOE. Similarly, NPC isd/3 for GOE.

In terms of the locally renormalized amplitudesC k
E

5Ck
E/AuCk

Eu2 where the bar denotes ensemble average w
respect to EGOE(112), (kuCk

Eu45(kuC k
Eu4(uCk

Eu2)2. Then
the ensemble averaged~NPC! E is obtained as follows:

(
k

uCk
Eu4 →

EGOE~112!

(
k

uC k
Eu4~ uCk

Eu2!2

53(
k

~ uCk
Eu2!2

5
~3/d!

@rG
H~E!#2E dEk

@rbiv:G~E,Ek!#
2

rG
Hk~Ek!

5
~3/d!

@rG
H~E!#2E dEkrG

Hk~Ek!@Fk:G~E!#2

⇒

~NPC!E5~d/3!A12z4exp2H z2Ê2

11z2J . ~4!

TheÊ in Eq. ~4! is the standardizedE, i.e., it is zero centered
and normalized to unit width,Ê5(E2eH)/sH . In the first
step in Eq.~4!, the fact that EGOE exhibits average fluctu
tions separation~with little communication between the two!
is used. For example, in the normal mode decomposition
the EGOE state density, it is seen that the long wave-len
parts generate the smoothed Gaussian density~with correc-
tions! and the short wave-length parts the GOE fluctuatio
with damping of the intermediate ones~see@18–20# for de-
tailed discussions on this important result!. This allows one
01621
or-

d

h

f
th

s

to carry outuC k
Eu4 ensemble average independent of the oth

smoothed~average! term. In the second line, the Porter
Thomas form of local strength fluctuations is used and th
uC k

Eu453, a GOE result. In the third step, the result in Eq.~1!
is used. Then, the Gaussian forms, valid in the chaotic
main (l.lFk

), of all the densities for EGOE(112) give the
final formula ~this result was quoted first in@10# without
details!. Before turning to the formula for the localization
length l H , let us briefly discuss about the corrections to E
~4! due to the fluctuations in the variances ofFk(E); the
form with Fk(E) shown explicitly, is written in Eq.~4! for
this purpose and this form also allows one to understand
results in@21# as discussed ahead.

The correction to NPC due todsk
25sk

22sk
2Þ0 is ob-

tained by using, for smalludsk
2u, the hermite polynomial ex-

pansion which gives@16#, Fk:G(E)→Fk:G(E)$11c2(E k
2

21)% wherec25dsk
2/2sk

2 andEk5(E2Ek)/Ask
2. This cor-

rectedFk(E) is used in the integral form withFk(E) in Eq.
~4!. As NPC involves sum over all theuk& states, it is a valid
assumption to treat (dsk

2)’s as random and therefore in
@Fk(E)#2 only the terms that are quadratic in (dsk

2) will
contribute ~see @21#!. Replacing@(dsk

2)/sk
2# by (ds2)/sk

2

5@(d)21$(k (dsk
2)2%#1/2/sk

2 and substituting the corrected
Fk(E) for Fk:G(E) in Eq. ~4!, we get

~NPC!E5
~3/d!

@rG
H~E!#2

E dEkrG
Hk~Ek!@Fk:G~E!#2

3S 11
~ds2!

2sk
2

~E k
221!D 2

5
d

3
A12z4exp2H z2Ê2

11z2J
3H 11

1

4 F ~ds2!

sH
2 G 2

X~E!J 21

; ~5!

X~E!5
1

~11z2!4 F Ê422
~11z2!~122z2!

12z2
Ê2

1S 11z2

12z2D 2

~112z4!G .

The ds2 correction term in Eq.~5! is valid only when the
fluctuations in the variances ofFk(E)’s are small~this is in
general always true!. For small z values, the formula for
NPC in Eq.~5! reduces to the expression given recently, f
EGOE~2!, by Kaplan and Papenbrock@21#; they use ideas
related to ‘‘scar theory.’’ In the EGOE(112) Hamiltonian
H5h(1)1lV(2), with l→` one obtains EGOE~2! and
then it is clear from the definition in Eq.~2! that in this limit
z;0. More precisely, with N@m@1, z2;(2

N)21 and
@(ds2)/sH

2 #2;@(2
m)(2

N)#21 for $H%5$V(2)%; see the Appen-
dix. Therefore for finiteN, the correlation coefficient and the
9-4
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variance corrections are small but nonzero and in the largN
limit, they are zero giving the GOE result as pointed out
@10#. As we add the mean-field part to the EGOE~2!, z in-
creases and at the same time the variance correction
creases; see the Appendix. Thus, the formula~5! with the
(ds2) term is important only for smallz. Equation~4! is
accurate for reasonably largez ~say for z>0.3) as in the
examples discussed in@10#. All these results are well tested
by the numerical examples in Sec. IV.

Proceeding exactly as in Eq.~4!, formula for the localiza-
tion length l H as a function of the excitation energy is de
rived. Using the definition~3!, writing uCk

Eu2 in terms of
uC k

Eu2 and uCk
Eu2, using the GOE resultsuC k

Eu251 and
uC k

Eu2ln(uC k
Eu2)52 ln 0.48, applying the last equality in Eq

~1! and replacing all the densities by their correspondi
Gaussian forms, converting the sum in Eq.~3! into an inte-
gral and finally carrying out the integration, the expressi
for l H in wave functions is obtained,

l H~E! →
EGOE~112!

2E dEk

rbiv:G~E,Ek!

rG
H~E!

lnH rbiv:G~E,Ek!

rG
Hk~Ek!rG

H~E!
J

5A12z2expS z2

2 Dexp2S z2Ê2

2
D . ~6!

The result in Eq.~6! was reported in@10# without details. By
rewriting the integral in Eq.~6! in terms ofFk(E) and mak-
ing small (ds2) expansion just as in the case of NPC, th
formula incorporating corrections due to fluctuations~with
respect tok) in the variances ofFk(E) is derived following
the arguments that led to Eq.~5!. Neglecting higher-order
terms in@(ds2)/sH

2 #2, the final result is

l H~E!5A12z2expS z2

2 DexpF2S z2Ê2

2
D G

3S 12
1

8 F ~ds2!

sH
2 G 2

Y~E!D ; ~7!

Y~E!5
1

~12z2!2
$~12z2!2~Ê221!214z2~12z2!

3Ê212z4%.

IV. NUMERICAL TESTS

NPC andl H are calulated for a EGOE(112) with 6 par-
ticles in 12 single-particle states and the results are compa
with Eqs.~4–7! in Fig. 2. In the numerical calculations, th
single-particle energies (i 11/i ),i 51,2, . . . ,12define h(1)
~as in @12# and Fig. 1!, in the two-particle spaceV(2) is a
GOE ~calculations use 25 members! with unit matrix ele-
ments variance and the Hamiltonian ensemble is$Ha,l%
5ah(1)1l$V(2)%. The value ofl50.2 is fixed so that, for
a<1 the level fluctuations are of GOE; i.e., one is in th
chaotic domain~see @1,17# and Fig. 1!. Results for a
50,0.5, and 1 in Figs. 2~a! and 2~b! clearly demonstrate tha
01621
e-

g

n

ed

the EGOE(112) formulas based on the bivariate Gaussi
form for rbiv(E,Ek) are excellent. In these examplesz val-
ues are 0.16, 0.59, and 0.82, respectively. The (ds2) correc-
tion is seen to be important only for the case witha50. In
fact, the@(ds2)/sH

2 #2 values for the three cases consider
are 0.12131021, 0.54531022, and 0.13431022. Thus, for
realistic fermion models that are represented by EGOE
12) ~with l.lFk

), the correction due to variance fluctua

tions is expected to be significant only in the situationz is
small. Extension of EGOE~2! with explicit inclusion of spin
degrees of freedom~each single-particle level is taken to b
doubly degenerate withsz561/2; see the third reference in
@4#! was considered and for a system of six fermions in se
levels ~i.e., m56, N5732) with total Sz50, giving d
51225, NPC was calculated as a function of the excitat
energy in@21#; we call this model EGOE~2!-S. In this ex-
ample, as given in@21#, z50.3 and@(ds2)/sH

2 #250.052.
Thus, here the corrections due to variance fluctuations
non-negligible~the situation in this case is similar to thea
50 case in Fig. 2! and applying Eq.~5! gives an excellent
description, as shown in Fig. 3~a!, of the results for NPC
reported in@21# for the EGOE~2!-S model. Returning to Fig.

FIG. 2. ~a! Number of principal components NPC and~b! the
localization lengthl H in wave functions for a system of 6 interac
ing particles in 12 single-particle states~matrix dimension is 924!.
Here, for conveniance, the EGOE(112) Hamiltonian is changed to
$H (a,l)%5ah(1)1l$V(2)%. Numerical EGOE(112) results cor-
respond to filled circles. The continuous curves correspond to
theory~4! for NPC and Eq.~6! for l H . For the case witha50, the
dashed curves correspond to the theory~5! for NPC and Eq.~7! for
l H . For other cases, the correction due to variance fluctuation
negligible, and hence only the results of Eqs.~4! and~6! are shown
in the figure. Note that NPC5d/3 andl H51 for GOE. See text for
further details.
9-5



V. K. B. KOTA AND R. SAHU PHYSICAL REVIEW E 64 016219
FIG. 3. ~a! NPC for the EGOE~2!-S model described in the text compared with the results given by Eqs.~4! and ~5!. The filled circles
are for the numerical EGOE~2!-S calculations reported in@21#. The continuous and dashed curves represent Eqs.~4! and ~5!, respectively.
~b! NPC for the (sd) shell nucleus24Mg compared with Eq.~4!. The shell-model calculations are the same as in@11#. In this example, Eqs.
~4! and~5! give almost identical results, and hence, the curve corresponding to Eq.~5! is not shown in the figure.~c! Shell-model results for
46Sc for l H reported in@22# compared with the theoretical curve given by Eq.~6! with z50.92.
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2, it should be mentioned that there are differences betw
the numerical results and the predictions based on Eqs~4!
and~6! even for the cases withz50.59 and 0.82. These ma
be due to the departures ofrbiv(E,Ek) from the bivariate
Gaussian form. An important observation from Eqs.~4! and
~6! is, at the spectrum center NPC5(d/3)A12z4 and l H

5A12z2exp(z2/2). Therefore forz2 close to 0.8 or large,
there will be large deviations from GOE even at the sp
trum center for a system described by EGOE(112). This is
clearly seen in thea51 case in Fig. 2; herez50.82. Finally,
it should be mentioned that the EGOE(112) calculations
for the N514, m57 system~the case considered in Fig. 1!
are also carried out and the results are seen to be essen
same as in Figs. 2~a,b!.

Let us now turn to the nuclear shell model that is a re
istic interacting fermion model. There are shell-model resu
for the (2s1d) shell ~here after calledsd shell! nuclei 28Si
@3# and 22Na ~see@1# and the second reference in@11#! for
NPC andl H in wave functions. For28Si the 839 dimensiona
J50,T50 space~with six protons and six neutrons in thesd
shell! and the 3243 dimensionalJ52,T50 space are consid
ered. Similarly, for 22Na the 307 dimensionalJ52,T50
space~with three protons and three neutrons in thesd shell!
is considered. The results for these nuclei are analyzed u
Eqs. ~4! and ~6! as briefly discussed in@10,1#. In all the sd
shell examples,z;0.620.7 and therefore the situation i
similar to thea50.5 case in Fig. 2. Thus, in these example
the departures from GOE at the spectrum center are no m
than 10% but away from the center, there are large de
tures. The shell model NPC andl H for sd shell nuclei are
seen to be well described by the EGOE forms in Eqs.~4! and
~6!. For further confirming this, NPC is evaluated for24Mg
in the 325 dimensionalJ50,T50 space~with four protons
and four neutrons in thesd shell! and the results are show
in Fig. 3~b!; herez50.68. It can be concluded that the d
0162
en

c-

ally

l-
ts

ing

,
ore
r-

-

viations of thesd shell-model results from GOE clearly im
ply that the shell-model Hamiltonians are well represen
by EGOE(112) ~with l.lFk

) but not by GOE. It is also
seen that the corrections due to (ds2) are small for (sd)
shell nuclei~note that herez is large!; in the 24Mg example,
@(ds2)/sH

2 #250.024. In order to further substantiate th
EGOE description of the structure of nuclear shell-mo
wave functions, we have analyzed using Eq.~6! the l H(E) vs
E results reported recently in@22# for 2p1 f shell ~hereafter
calledp f shell! nuclei 50Ca and46Sc. In the case of50Ca the
2051-dimensionalJ56,T55 space~with ten protons in the
p f shell! and in 46Sc the 2042 dimensionalJ51,T52 space
~with one proton and five neutrons in thep f shell! are con-
sidered and a modern large shell-model code was used
obtaining thel H values. The shell-model results forl H in Fig.
9 of @22#, via Eq. ~6!, determinez to be 0.96 and 0.92
respectively, for the50Ca and46Sc examples; results for46Sc
are shown in Fig. 3~c!. From the definition~2! but employing
averages overmT spaces~instead ofmJTspaces!, we obtain
thez values 0.91 and 0.89, respectively. It should be poin
out that given the single-particle energies and the two-b
matrix elements of the shell-model Hamiltonians, it is ea
to calculatez in fixed mT spaces using trace propagatio
methods@by extending Eqs.~A3! and ~A4!# @1,15#. The p f
shell examples are similar to thea51 case in Fig. 2 and
therefore, as expected, one sees large departures from
even at the spectrum center. Finally, it is seen from the sh
model examples in Fig. 3 and the EGOE examples in Fig
that further corrections to the results in Eqs.~4!–~7! need to
be worked out but this is not attempted in this paper. Si
larly, study of the nature of fluctuations in NPC andl H is
postponed for the future.

V. CONCLUSIONS

Wave-function structure given by the EGOE(112) ran-
dom matrix ensemble$H%5h(1)1l$V(2)% is studied by
19-6
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deriving compact formulas for NPC andl H . They are based
on: ~i! the Gaussian form for strength functionsFk(E)’s and
the bivariate Gaussian form forrbiv(E,Ek) @with Fk(E) be-
ing a conditional density ofrbiv(E,Ek)# which are valid in
the chaotic domain defined byl.lFk

; ~ii ! there is average-
fluctuations separation~with little communication between
the two! in energy levels and strengths with local streng
fluctuations following the Porter-Thomas law;~iii ! there is a
significant unitary group decomposition of the hamiltonia
With EGOE(112), the NPC andl H take Gaussian forms a
a function of the excitation energy and they are defined
the bivariate correlation coefficientz which measures the
variance of the distribution of centroids ofFk(E)’s relative
to the state-density variance. Theory for incorporating c
rections due to fluctuations in the variances~with k) of
Fk(E) is also given. For smallz, the present formulation
gives back the results for pure EGOE~2! @i.e., in thel→`
limit of EGOE(112)# as derived in@21# recently. The for-
mulas derived for NPC andl H are subjected to numerica
EGOE(112) tests withz changing from 0.1 to 0.8. These
and the analysis of the results for a EGOE~2!-S example and
some nuclear shell-model examples, clearly point out t
isolated finite realistic interacting particle systems, in t
chaotic domain (l>lFk

), will have wave-function structure

as given by EGOE(112). Finally, in the theory given by
Eqs.~4! and ~6!, NPC andl H depend on just one paramete
and this appears to be an aspect of ‘‘geometric chaos’’~see
@23# for a recent discussion on geometric chaos!.
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APPENDIX

Let us consider a system ofm fermions in N single-
particle states with a~112!-body Hamiltonian H5h(1)
1V(2) whereh(1) is specified by the single-particle ene
gies e i @with i denoting thei th single-particle state,h(1)
5( ie i ni whereni are number operators# and V(2) by the
two-body matrix elementsVi jkl 5^kluV(2)u i j &. The two-
body interaction can be seperated intoV(2)5V[0]1V where
V[0] is given by

V[0]5(
i , j

Vi j i j ninj . ~A1!

The h(1)1V[0] generates theFk(E) centroidsEk . With N
single-particle states, there is aU(N) group generated by the
N2 operatorsai

†aj whereai
† andaj are one-particle creation

and destruction operators, respectively. With respect to
U(N) group,V[0] decomposes inton50,1,2 parts and their
explicit structure is~for a givenm),

V[0],05S m
2 DV0; V05S N

2 D 21

(
i , j

Vi j i j ,
01621
.

y

r-

at
e

is

V[0],15
m21

N22 (
i

z ini ; z i5(
j Þ i

~Vi ji j 2V0!,

V[0],25V[0]2V[0],02V[0],1. ~A2!

Similarly, the h(1) operator will haven50,1 parts; h0

5me0 wheree05(N)21( ie i and h1(1)5( ie i
1ni wheree i

1

5e i2e0. Finally it is to be noted thatV behaves essentially
as an52 operator~then51 part ofV is of negligible size in
the N@m@1 limit!.

The U(N) norm ~in the m-particle spaces! of an operator
O is defined byuuOuum5A^(O2^O&m)†(O2^O&m)&m. An
important theorem is that then50,1,2 parts ofH are or-
thogonal with respect to thisU(N) norm. For an51 opera-
tor O(1)5( ieini , the norm square is simply given by

uuO~1!uum
2 5

m~N2m!

N~N21! (
i

ei
2 . ~A3!

Similarly for a n52 operatorO(2),

uuO~2!uum
2 5

m~m21!~N2m!~N2m21!

2~N22!~N23!
^O †~2!O~2!&2.

~A4!

Using Eqs.~A3! and ~A4! one can calculate the norms o
h11V[0],1 and V[0],2 and in general the later is very smal
compared to the former. Thenh(1)1V[0]→h5( ij ini

wherej i5e i
11(m21/N22)z i ~note that at the end we add

the spectrum centroid generating parth01V[0],0 to h). Thus,
neglecting theV[0],2 part, the centroids ofFk(E)’s are gen-
erated byh and the variances byV. As h andV are orthogo-
nal,sH

2 5sh
21sV

2 . These variances, inm-particle spaces, fol-
low easily from Eqs.~A3! and ~A4!. See@1,24# for further
details.

Let us consider a EGOE(112) HamiltonianH5ah(1)
1lV(2) with unit spacing between thee i ’s and theVi jkl
taken as zero-centered Gaussian variables with unit varian
In theN..m..1 situation one can study the behavior o
z2 and (ds2) as follows. The correlation coefficientz2

5sh
2/sH

2 and, neglecting the contributions ofV(2) to sh ,
one getssh

2;(mN2/12)a2. Similarly, sV
2;(2

m)(2
N)l2. Here,

Eqs. ~A3! and ~A4! are used. Therefore,z25@(1
13m (l/a)2#21 and this expression gives 0.51 and 0.76 fo
thea50.5 and 1 cases in Fig. 2. They compare well with th
exact numbers given in Fig. 2. However, this estimate fails
the situationa→0. For a50, theh has to be replaced by
V[0] and then theEk energies are a sum of (2

m) zero-centered
Gaussian variables each with variancel2. This, together
with thesV

2 expression, givesz2;(2
m)21 for a;0 as pointed

out in @21#. The number quoted for thea50 case in Fig. 2 is
close to this estimate. Finally, an estimate for@(ds2)/sH

2 #2

is obtained from Eq.~A4! by noting thatsV
2 is a sum ofK

;(2
m)(2

N) x2-variables and therefore@(ds2)/sV
2#252/K as

given first in @12#. Then,sV
25(12z2)sH

2 gives the final re-
sult @(ds2)/sH

2 #2;2(12z2)/(2
m)(2

N).
9-7
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