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Structure of wave functions in (1+2)-body random matrix ensembles
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Random matrix ensembles defined by a mean-field one body plus a chaos generating random two-body
interaction[called embedded ensembles of{2)-body interactionkpredict for wave functions, in the chaotic
domain, an essentially one-parameter Gaussian forms for the energy dependence of the number of principal
componentgNPC) and the localization lengthy (defined by information entropywhich are two important
measures of chaos in finite interacting many-patrticle systems. Numerical embedded ensemble calculations and
nuclear shell-model results, for NPC ahg, are compared with the theory. These analyses clearly point out
that for realistic finite interacting many-particle systems, in the chaotic domain, wave-function structure is
given by (1+2)-body embedded random matrix ensembles.
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[. INTRODUCTION importance. This problem was addressed in Rfsl0]. In
[9] results for NPC in wave functions, in the so-called Breit-
In the last few years, the study of quantum chaos in isoWigner (BW) domain, are derived. On the other hand, in
lated finite interacting particle systems has shifted from sped-10] results in the so-called Gaussian doméime BW and
tral statistics to properties of wave functions and transitionGaussian domains are defined in Sec. Il ahead derived
strengths(for example, electromagnetic and Gamow-Tellerfor NPC andl in transition strength distributions with only
transition strengths in atomic nuclei, dipole strengths in atthe final results mentioned for wave functions. The purpose
oms, etc.. Working in this direction, several research groupsof the present paper is to give a detailed derivation of the
have recognized recently that the two-body random matrixesults mentioned ifil0] for NPC andl in wave functions
ensembles and their various extended versions form goo@nd subject them to numerical tests. Now we will give a
models for understanding various aspects of chaos in intepreview.
acting particle systemid]. In particular, using the so-called Section |l gives some of the basic results for EGOE (1
embedded Gaussian orthogonal ensemble gfZ)J-body in-  +2). In Sec. Ill, formulas for NPC anlg, in wave functions
teractions| EGOH1+2)] defined by a mean-field one body are derived by exploiting the Gaussian nature and the asso-
plus a chaos generating random two-body interaction, thereiated properties of strength functions in EGOE(2). Nu-
are now several studies on the nature of occupancies aherical tests of the theory are given in Sec. IV. Finally, Sec.
single-particle states, strength functiofws local density of V gives concluding remarks.
state$, information entropy, transition strength sums, and
transition-matrix gler_nents of pne—body trgnsition operators, || BASIC RESULTS FOR (1+2)-BODY RANDOM
Fock-space localization, etc., in the chaotic domain of inter- MATRIX ENSEMBLES
acting particle systems such as atdrak nuclei[1,3], quan-
tum dots[4], quantum computergs], and so on. Reference Givenm fermions inN single-particle states, assuming at
[1] gives a recent overview of this subject. The focus in thethe outset that the many-particle spaces are direct product
present article is on two important measures of localizatiorspaces of the single-particle states, two-body random matrix
(in wave functions and transition strength distribution®  ensemblegusually called TBRE are generated by defining
number of principal component®PC) [or the inverse par- the HamiltonianH, which is two-body, to be a random ma-
ticipation ratio (IPR)]; (ii) localization length,; as defined trix in the two-particle spaces and then propagating it to the
by the information entropyg"™ ). It is well established that () dimensionalm-particle spaces by using their geometry
the NPC in wave functions characterizes various layers ofdirect product structuje often one considers a GOE repre-
chaos in interacting particle systeftd. In addition, for sys- sentation in the two-particle spaces and then the TBRE is
tems such as atomic nuclei, NPC for transition strengths is aalled EGOE2); see[1] for more details. For a EGOB),
measure of fluctuations in transition strength sums. Simiwith N>m>2, the normalized state densip(E)=(5(H
larly, the role ofl; in quantum chaos studies is well empha- —E)) takes Gaussian form and it is defined by its centroid
sized by Izrailev[7] and more significantly, using nuclear e=(H) and variancar?=((H— €)?). In order to explicitly
physics examplef8], it is well demonstrated that the wave- state that the state density is generated by the Hamiltdthian
function entropyS"° coincides with the thermodynamic en- sometimesp(E) is denoted ag"(E) and similarlye as ey
tropy for many-particle systems with two-body interactionsand o as o,. Note that the averageér) are over the
of sufficient strength but only in the presence of a mean fieldm-particle spaces; in the nuclear physics examples, they are
i.e., in the chaotic domain but with a mean field — therefore,usually over them-particle spaces with fixed angular mo-
the significance of EGOE(%2). Clearly, deriving the pre- mentum(J) and isospin(T) which are good quantum num-
dictions of EGOE(X-2) for NPC and, are of considerable bers. Just as the state density, given a transition opetator
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FIG. 1. Strength functions,(E), Dyson-Mehta\ ; statistic for level fluctuations and occupanc{&n;|E) for EGOE(1+ 2) for various
values of the interaction strengthin {H}=h(1)+\{V(2)} for a system of 7 fermions in 14 single particle stafgse to computational
constraints, here, only one member is considered just §2; the matrix dimension is 3432. The single-particle energies used in the
calculations are;= (i +1/i),i=1,2, ... ,14ust as in[12]. (a) The histograms are EGOE{12) results for the strength functions, continuous
curves are BW fit and the dotted curves are Gaussian 0.1 and Edgeworth corrected Gaussjaf] for A>0.1. In constructing the
strength functions|,C,'f|2 are summed over the basis stai€sin the energy WindOV\EkiA and then the ensemble averag'e@k(lAE) vsE
is constructed as a histogram; the value\dis chosen to be 0.025 for<0.1 and beyond thia =0.1. Here £, = (E,— e4)/ oy and in the
figure E,=0. Note that for)\pk~0.2, there is BW to Gaussian transitiaii) The Az(L) statistic for overlapping intervals of length
<40 are compared with Poisson and GOE values.N-e0.06, there is a Poisson to GOE transition in festatistic.(c) The wavy curves
are numerical EGOE(%2) results for occupancies and the smoothed curves mit®.06 correspond to the results of EGQEtheory
(ratio of Gaussians Note that forh <0.06, there are wide fluctuations in occupancies and the smoothed forms here are meaningless. All the
results are shown for the lowest six single-particle states. Results similar to those in the figureNertBgen=6 case, are reported ji].

the normalized bivariate strength densitiesatrix elements of random matrices of (£2)-body Hamiltonians where
of O weighted by the state densities at the initial and finalfH}=h(1)+\{V(2)}; sometimes it is more convenient to
energies pyi,;0(Ei Ef) = [<(_9TO>]71(0T5(H —EfOS3(H  useah(1)+M\{V(2)}. Here {} denotes ensembla, and &
—Ej)) take bivariate Gaussian form for EGQE and itis  are free parameters an{2) in the two-particle spaces is a
defined by the centroidse(,e;) and widths ¢,0%) of its  GOE with unit matrix elements variance; note that in gen-
two marginals and the bivariate correlation coefficient that iSeraI,h(l) need not be fixed nor(2) a GOE(in this general,
given by (O'[(H— &)/ o ]O[(H—€&)/oi1)/{OTO). Third,  case, the ensemble is simply called the embedded ensemble
the level and strength fluctuations follow GOE. Moreover, ¢ (1+2)-body interaction§EE(1+2)]; see[1] for more de-
with the Gaussian form for the state densities and bivariategans)_ At this stage, it is importan,t to stress that all the
Gaustlan form for tr/1e strer21gth densities, the st_rength SUMEGOR?2) results mentioned before are indeed applicable to
(E|OTO|E)=2¢/|(E"|O|E)|* take the form of ratio of Wo  £50E (14 2) but only in the domain of chaos. Givem(N)

Gaussians, <E|9TO| E>:<OTQ>’)OTQZQ(E)/’)9(E) and the average spacidg[generated by (1)] of the single-
where p‘ﬁ@:g(E)zﬁo O&(H; E)) is defined by2 S particle stateswithout loss of generality one can puk
centroid ept1o=(O'OH)/(O'0) and variance 0,15 =1)itis possible to find the critical value\, such that for
=(0TOH?)(010) - €1,,; G stands for Gaussian. A=\, there is the onset of chaé&OE level fluctuationsin

Hamiltonians for realistic interacting particle systemsmany (m>1) particle spaces. In fack, is of the order of
contain a mean-field pafone-body parh(1)] and a two- the spacing betweem-particle mean-field basis states that
body residual interaction/(2) mixing the configurations are directly coupled by the two-body interaction; see the sec-
built out of the distribution of particles in the mean-field ond and third reference i@]. ForA>\., for example, it is
single-particle stated)(1) is defined by the single-particle well established that the transition strength sums in
energiese; ,i=1,2,... N and V(2) is defined by its two- EGOE(1+2) follow the EGOE2) forms; see Fig. ()
particle matrix elements. Then it is more realistic to useahead. Referenceld,11] give many numerical examples for
EGOE(1+2), the embedded Gaussian orthogonal ensemblthis, drawn from EGOE(%2), and more importantly, for
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atomic nuclei in several parts of the periodic taldetailed = . 5
discussion of the nuclear physics examples is given in the oe=0y=(d) 12 [alHIB)P,
last reference of{11]). It should be mentioned that the arp
Gausian forms of state and transition strength densities a
used in[10] to derive simple formulas for NPC arlg, in
transition strength distributions.

For deriving formulas for NPC anld; in wave functions,
most useful quantity is the strength functi@r local density
of stateg F\(E). Given the mean-field basis statés with

\Wherea and B arem-particle mean-field basis states indices.
The results(i) the norm of theVI!? part is negligible and
(i) the widths of the strength functions are nearly constant
(with little fluctuations are well verified in a number of ex-
amples; se€l13] and references ifl] for many nuclear phys-

. . ics examples. EGOEH 2) discussions in the literature tac-
energiesE,—(k|H|k), the eigenstatelE) can be expanded itly assurﬁe that is rf(l)) andV is V(2) and the same is

aS|E>:EkCE|k>,' Then the strength functiofi(E) =(5(H assumed from now on, i.dd=h+AV—h(1)+AV(2). In
—E))*=2¢/|Cy |?8(E—E’) and therefore it gives informa-  addition to (i) and (i), it is well verified in a number of
tion about the structure of the eigenfunctions. In order tonumerical calculations thatiii) F(E)’s exhibit a transition
proceed further, let us say that tBg energies are generated from BW to Gaussian form in the chaotic domain defined by
by.a Hgmi_ltgniaer (the strgcture oHy is discg§sed aheb_d A>Ng; USUa”y)\c<?\Fk§ see[1,14] for some analytical un-
With this, itis easy to identiff"(E) as a conditional density - yerstanding of this result. The results (i), andiiii) clearly

of the bivariate densityy, (E,Ei) =(5(H—E)o(Hk—EW).  imply that thepy;,(E,E,) is a bivariate Gaussian and this
Taking degeneracies & and E, energies into account we regit was first mentioned ifL5]. A numerical example for

have, the BW to Gaussian transition in strength functions in
EGOE(1+2) is shown in Fig. (). In this examplehg,
pbiu(EsEk):<5(H_E)5(Hk_ Ek)>:(l/d) E |C|E,f|2 ~0.2 and it is much Iarger_’thanCZO.O§ thalned Yla the
ack,BeE results for the Dyson-MehtA ; level statistic shown in Fig.

1(b). Thus, there is the onset of GOE fluctuations much be-
fore theF(E)’s start taking Gaussian form, i-a\Fk>)\c-

Unlike the case with strength function@lso transition

=(1/d)|Cy|Z[dp"(E)][dp"K(Ey)]

= strength densities; sdd.7]), as mentioned before, strength
sums start following the EGQE) form (i.e., ratio of Gaus-
F(E)=ppi,(E,E)/p"k(E}) siang from A=X\.. This is demonstrated in Fig(d where

occupancies E|n;|E) as a function ofE are shown[they
=5 ’ " correspond to the strength sums generated by single state
|Ci]*= poiv(E,E)/[dp" (E) p"(E)]- (1) (]i)) destruction operatofsAs mentioned in the Introduc-
tion, the nature of NP@which is the inverse of IPRn wave
In Eg. (1), d stands for the dimensionality of the-particle  functions in thex ;<X <\¢,_domain whereF (E) is of BW

spaces anfiCE|2 is the average dfCE|2 over all the degen- form (i.e., in the BW domaipwas studied ir{9] while the
erate states. Let us now examine the structurddpfand  Present article is concerned with the-A¢, domain(i.e., the
poi(E,Ey). First, it should be noted that the two-body inter- Gaussian domajnwhereF(E) is of Gaussian form.
actionV(2) can be decomposed into two paxg2)= V[

+V so thath(1)+VI?) generates th&, energies(diagonal . EGOE (1+2) RESULTS FOR NPC AND I, IN WAVE
matrix elements ofH in the m-particle mean-field basis FUNCTIONS

state$. With m particles inN single-particle states, there is a

U(N) group and with respect to this gronf®! contains a For EGOE(1+2), in the chaotic domain with >\,
scalar part VI©° (a function of m), an effective one has from Sec. Il the result$) E, are generated by,
(m-dependentone-body(Hartree-Fock-likg part VI®* and = h(1), therefore the variance @i'x(E,) is oﬁ; (i) widths
an irreducible two-body pary(®2 The VI?+ VIt will  of the strength functions are constant and they are generated
add to h(l[)O]%IVIHQ[IO]aln effective one-body part ¢f; h(1)  py v(2), the average variancer?= o3 ; (iii) F(E)'s are
—h(1)+ V= +VEEL-=h. The important point now being  Gayssian in form(iv) F,(E) is a conditional density of the

that, with respect to & (N) norm, the size oW%?is usu-  pjyariate Gaussiapy,,.¢(E,Ey). The correlation coefficient
ally very small compared to the size bfin the m-particle /¢ poiv-o(E,Ey) is given by,

spaces. With thisi =h+V and then théH, is nothing buth.

The pieceV=V(2)—VI% generates the widths and other =

. ((H—en)(H—€n)) o
shape parameters &, (E). It should be added that with - HA" 'k °H - 1— X )
respect to théJ(N) normh andV are orthogonal and there- V((H=€eq)2{(H—€n)?) ol

fore o3 = o2+ o Definition of VI, a brief discussion of

its U(N) decomposition, etc., are given in the Appendix. ForNote that the centroids of thE and E, energies are both
EGOE(1+2), it is well known that the widths dof (E) are  given bye,=(H). In Eq.(2), the second equality is obtained
in general constant; s¢&2] and the Appendix. The average by using the orthogonality betwedn(1) andV(2) opera-
variance ofF(E)’s is given simply by tors. It is immediately seen that th& is nothing but the
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variance ofE,’s [the centroids of(E)] normalized by the  to carry oufCf|* ensemble average independent of the other
state-density variance. The;,.g(E,E,), which takes into  smoothed(averagg term. In the second line, the Porter-
account the fluctuations in the centroids Bf(E) and as-  Thomas form of local strength fluctuations is used and then
sumes that the variances are constant, is used to derive fq_@5|4:3' a GOE result. In the third step, the result in EX).

mulas for NPC and, in the wave functiongmethods of  is'\;sed. Then, the Gaussian forms, valid in the chaotic do-

taking into account variance fluctuations will be discussedyain (\>\g ), of all the densities for EGOE(#2) give the
ahead == |E) expanded in the mean-field basis defined by K

_ , , final formula (this result was quoted first ifl0] without
the statesp,=|k). Let us first define NPC and,, detaily. Before turning to the formula for the localization

lengthly, let us briefly discuss about the corrections to Eq.
|E)=2, CElk) (4) due to the fluctuations in the variances Bf(E); the
k form with F (E) shown explicitly, is written in Eq(4) for
this purpose and this form also allows one to understand the
results in[21] as discussed ahead.

}1 The correction to NPC due téo2=o02—o2#0 is ob-
4

=

tained by using, for smalldoZ|, the hermite polynomial ex-
pansion which gives[16], Fk:g(E)—>Fk:g(E){l+c2(EE
l,(E)=exd (S"1°):1/(0.48d), —1)} wherec,= doi/20f and&=(E— Ek)/\/a—ﬁ. This cor-
rectedF,(E) is used in the integral form witk(E) in Eq.
, (4). As NPC involves sum over all tH&) states, it is a valid
(S"O)g= —EK | Ckl?In|C]?. (3 assumption to treatdo?)’s as random and therefore in
[F(E)]? only the terms that are quadratic ir&tﬁ) will
In Eq. (3) 0.4& is the GOE value foS"°, thus,l,;=1 for  contribute (see[21]). Replacing[(da})/of] by (so?)/ oy

(NPC)Ez[Ek ‘CE

GOE. Similarly, NPC isd/3 for GOE. =[(d) Y=, (80D)2 ¥ o and substituting the corrected
In terms of the locally renormalized amplitudefsf Fk(E) for Fy.¢(E) in Eq. (4), we get
=Cf/V|Cg|? where the bar denotes ensemble average with (3/d)
respect to EGOE(%2), 3,|CE|*==|CE|*(CE|?)?. Then (NPC)E:H—J dEkpgk(Ek)[Fk:g(E)]z
the ensemble averagéMPC)¢ is obtained as follows: [pg(E)]
T EGOH1+2) (802 ) ?
Dt - X e’ X| 1+ —=(&-1)
K K 20&

_ E|2\2 d 22
3% (ICif?) - ’—1—§4exp—[ { }
1

2

_(30) [pbiv:o(E.E)]? , 2+ ‘ i

[PRE)2) T piKEY x[1+%(50) x<E>] : (5)

=f’i dEpg (E)[ Frg(E) ]2 "

[eg(®17) | X(E)— {E4_2<1+52)<1—2z2>éz

_ (1+%* 1-¢2
) 1+ %)

(NPC)E=(d/3)\/1—_§4exp—[fii22]. 4) —| (1209,

The 8o correction term in Eq(5) is valid only when the
TheE in Eq. (4) is the standardizeH, i.e., it is zero centered fluctuations in the variances &% (E)’s are small(this is in
and normalized to unit widthE=(E— e,)/o. In the first ~ general always trye For small{ values, the formula for
step in Eq.(4), the fact that EGOE exhibits average fluctua- NPC in Eq.(5) reduces to the expression given recently, for
tions separatiofwith little communication between the two EGOE?2), by Kaplan and PapenbrodR1]; they use ideas
is used. For example, in the normal mode decomposition ofelated to “scar theory.” In the EGOE(%2) Hamiltonian
the EGOE state density, it is seen that the long wave-lengthl =h(1)+AV(2), with A—c one obtains EGO@) and
parts generate the smoothed Gaussian dem correc- then it is clear from the definition in EQZ) that in this limit
tiong and the short wave-length parts the GOE fluctuationg~0. More precisely, withN>m>1, (*~(})"* and
with damping of the intermediate onésee[18-20 for de-  [(802)/ 021> ~[ () ()]~ * for {H}={V(2)}; see the Appen-
tailed discussions on this important regulhis allows one dix. Therefore for finite, the correlation coefficient and the

016219-4



STRUCTURE OF WAVE FUNCTIONS IN (+2)-BODY ... PHYSICAL REVIEW E 64 016219

variance corrections are small but nonzero and in the ldrge prr T T 1o FGOE T
limit, they are zero giving the GOE result as pointed out in 300 AT, Eo theory 5 3
[10]. As we add the mean-field part to the EGQE ¢ in- Eoy theory =y ] 08 . v
H : . [ ~—EGOE(1+2) o] 0.6 f+ EGOE(1+2) 1
creases and at the same time the variance correction de .- o E 3
creases; see the Appendix. Thus, the form@awith the E cots ] a4 | o6 3
(80?) term is important only for small. Equat|0n(_4) is E' 020202 ] 02k 0=0.A=0.2 3
accurate for reasonably Iarge(say for§20'3) as In the 100:|||I|||I|||I|||I|||I|||: E|||I|||I|||||||I|||I|||E
examples discussed [10]. All these results are well tested oo b3 10 oF
by the numerical examples in Sec. IV. : /[\ GOf 4 osE B /'"\. E
Proceeding exactly as in EG}), formula for the localiza- E 200 E 2 rcokma 1 . F £ 7 caokmen) ]
. . o ; = E8 ¢ " {1 = L e E
tion lengthl, as a function of the excitation energy is de- E £ . ] E 3
rived. Using the definition(3), writing |Cf|? in terms of 100F s n M (0,59 ;
|CE|? and |C[|?, using the GOE result§Cf|?=1 and 0.5,1=0. 02 0=051=02 3
|CkI2In(|C]?)=—In0.48, applying the last equality in Eq. 0F ’ o PR
(1) and replacing all the densities by their corresponding 800 e cocs2) GOE 3 F ecomte $°EE
Gaussian forms, converting the sum in E8). into an inte- E ~ theory 3 o8 3 at E
gral and finally carrying out the integration, the expression ~ **[ ", E L Y
for I in wave functions is obtained, E s 3 04 F R
100 E  Foeusr y o E £ opom .
E So=12=02 % 3 “F & o=14=02 E
EGOH1+2) Pbiu:g(E’Ek) pbiv:Q(E!Ek) 0:" AT o0 Bt e
ln(E)  — — | dE H Iny = A 3 -2-10 1 2 3 T3 2 10 1 2 3
PH(E) PH(EPH(E)
(a) (E- e)o (b) (E- e)lo
é~2 gZEZ
=V1-¢ ex;{? exp— N (6) FIG. 2. (8 Number of principal components NPC afig) the

localization length ,; in wave functions for a system of 6 interact-
The result in Eq(6) was reported if10] without details. By  ing particles in 12 single-particle statésatrix dimension is 924
rewriting the integral in Eq(6) in terms ofF(E) and mak-  Here, for conveniance, the EGOE{R) Hamiltonian is changed to
ing small (502) expansion just as in the case of NPC, the{Hxn}=ah(1)+1{V(2)}. Numerical EGOE(%2) results cor-
formula incorporating corrections due to fluctuatiomsth respond to filled circles. The continuous curves co_rrespond to the
respect tk) in the variances oF (E) is derived following ~ theory(4) for NPC and Eq(6) for I, . For the case witlx=0, the

the arguments that led to E¢5). Neglecting higher-order dashed curves correspond to the the@yfor NPC and Eq(7) for
- Ny 272 . - Iy . For other cases, the correction due to variance fluctuations is
terms in[(8o?)/of]%, the final result is

negligible, and hence only the results of Egb.and(6) are shown
229 in the figure. Note that NPE€d/3 andl;=1 for GOE. See text for
B ) } further details.

(60%)

o}

2
Iy(E)=1— gzex;{%) exr{ —( >
ues are 0.16, 0.59, and 0.82, respectively. The?j correc-
tion is seen to be important only for the case witk 0. In

1 2 the EGOE(H-2) formulas based on the bivariate Gaussian
% ( 1— 5 l ( )) : (7)  form for py,;,(E,Ey) are excellent. In these examplés/al-
o s 5 5 5 fact, the[(&rz)/aﬁ]2 values for the three cases considered
=m{(l—§ VB =1)"+409(1- ) are 0.12K 10, 0.545< 1072, and 0.13%& 10~2. Thus, for
realistic fermion models that are represented by EGOE(1
X E2+ 204, +2) (with A>\g)), the correction due to variance fluctua-

tions is expected to be significant only in the situatiois
small. Extension of EGOR) with explicit inclusion of spin
degrees of freedorfeach single-particle level is taken to be
NPC andl, are calulated for a EGOE2) with 6 par-  doubly degenerate with,= + 1/2; see the third reference in
ticles in 12 single-particle states and the results are compardd]) was considered and for a system of six fermions in seven
with Egs.(4-7) in Fig. 2. In the numerical calculations, the levels (i.e., m=6, N=7X2) with total S,=0, giving d
single-particle energiesi¢ 1/),i=1,2,...,12defineh(1)  =1225, NPC was calculated as a function of the excitation
(as in[12] and Fig. 2, in the two-particle spac¥(2) is a  energy in[21]; we call this model EGOR)-S. In this ex-
GOE (calculations use 25 membegrgith unit matrix ele- ample, as given if21], {=0.3 and[(ﬁaz)/aﬁ,]zzo.OSZ.
ments variance and the Hamiltonian ensemblefhs, ,}  Thus, here the corrections due to variance fluctuations are
=ah(1)+N\{V(2)}. The value ofA=0.2 is fixed so that, for non-negligible(the situation in this case is similar to the
a<1 the level fluctuations are of GOE; i.e., one is in the=0 case in Fig. 2and applying Eq(5) gives an excellent
chaotic domain(see [1,17] and Fig. 1. Results for « description, as shown in Fig.(®, of the results for NPC
=0,0.5, and 1 in Figs. (@) and 2b) clearly demonstrate that reported in21] for the EGOE?2)-S model. Returning to Fig.

Y(E)

IV. NUMERICAL TESTS
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FIG. 3. (a) NPC for the EGOR2)-S model described in the text compared with the results given by(Bgand(5). The filled circles
are for the numerical EGQE)-S calculations reported if21]. The continuous and dashed curves represent @gsnd (5), respectively.
(b) NPC for the 6d) shell nucleus®Mg compared with Eq(4). The shell-model calculations are the same d4.1j. In this example, Egs.
(4) and(5) give almost identical results, and hence, the curve corresponding {®)gg.not shown in the figurgc) Shell-model results for
483¢ forly, reported in[22] compared with the theoretical curve given by ). with £=0.92.

2, it should be mentioned that there are differences betweeviations of thesd shell-model results from GOE clearly im-
the numerical results and the predictions based on @js. ply that the shell-model Hamiltonians are well represented
and(6) even for the cases with=0.59 and 0.82. These may by EGOE(1+2) (with )\>)\Fk) but not by GOE. It is also

be due to the departures pf;,(E,E,) from the bivariate
Gaussian form. An important observation from E@b.and
(6) is, at the spectrum center NRQd/3)y1—¢* and Iy

=1 Pexp(??2). Therefore for{? close to 0.8 or large,

seen that the corrections due téof?) are small for &d)
shell nuclei(note that herg is large; in the Mg example,
[(80%)/0%1?=0.024. In order to further substantiate the
EGOE description of the structure of nuclear shell-model

there will be large deviations from GOE even at the specwave functions, we have analyzed using &j.thel,(E) vs

trum center for a system described by EGOE). This is
clearly seen in thee=1 case in Fig. 2; heré=0.82. Finally,
it should be mentioned that the EGOE(2) calculations
for the N=14, m=7 system(the case considered in Fig) 1

E results reported recently ii22] for 2p1f shell (hereafter
calledpf shel) nuclei °°Ca and*®Sc. In the case of°Ca the
2051-dimensional =6,T=5 space(with ten protons in the
pf shel) and in %°Sc the 2042 dimensiond=1,T=2 space

are also carried out and the results are seen to be essentiaflyfith one proton and five neutrons in tipé shel) are con-

same as in Figs.(3,b.

Let us now turn to the nuclear shell model that is a real
istic interacting fermion model. There are shell-model result
for the (2s1d) shell (here after callegd shel) nuclei 2%Si
[3] and ?°Na (see[1] and the second reference [ihl]) for
NPC and, in wave functions. For®Si the 839 dimensional
J=0,T=0 spacdwith six protons and six neutrons in tke
shel) and the 3243 dimensiondk 2,T=0 space are consid-
ered. Similarly, for ?°Na the 307 dimensional=2T=0
space(with three protons and three neutrons in #eshel)

sidered and a modern large shell-model code was used for

|_obtaining thd  values. The shell-model results fler in Fig.
@ of [22], via Eq. (6), determine{ to be 0.96 and 0.92,

respectively, for the’Ca and*®Sc examples; results fdfSc

are shown in Fig. ). From the definitior(2) but employing
averages ovanT spaceginstead ofmJT spacey we obtain
the ¢ values 0.91 and 0.89, respectively. It should be pointed
out that given the single-particle energies and the two-body
matrix elements of the shell-model Hamiltonians, it is easy
to calculate? in fixed mT spaces using trace propagation
methods[by extending Egqs(A3) and (A4)] [1,15]. The pf

is considered. The results for these nuclei are analyzed usinghell examples are similar to the=1 case in Fig. 2 and
Egs.(4) and (6) as briefly discussed ifl0,1]. In all thesd  therefore, as expected, one sees large departures from GOE
shell examples{~0.6—-0.7 and therefore the situation is even at the spectrum center. Finally, it is seen from the shell-
similar to thew= 0.5 case in Fig. 2. Thus, in these examples,model examples in Fig. 3 and the EGOE examples in Fig. 2
the departures from GOE at the spectrum center are no motbat further corrections to the results in Eg—(7) need to

than 10% but away from the center, there are large depabe worked out but this is not attempted in this paper. Simi-
tures. The shell model NPC ang for sd shell nuclei are larly, study of the nature of fluctuations in NPC ahd is

seen to be well described by the EGOE forms in E4sand ~ postponed for the future.

(6). For further confirming this, NPC is evaluated f¢iMg
in the 325 dimensional=0,T=0 space(with four protons
and four neutrons in thed shell and the results are shown  Wave-function structure given by the EGOE(2) ran-
in Fig. 3(b); here{=0.68. It can be concluded that the de- dom matrix ensemblé¢H}=h(1)+\{V(2)} is studied by

V. CONCLUSIONS

016219-6



STRUCTURE OF WAVE FUNCTIONS IN (+2)-BODY ...

deriving compact formulas for NPC angd. They are based
on: (i) the Gaussian form for strength functiofRg(E)’s and
the bivariate Gaussian form fox,;,(E,E,) [with F(E) be-
ing a conditional density opy;,(E,E,)] which are valid in
the chaotic domain defined by>\¢ ; (i) there is average-
fluctuations separatiofwith little communication between
the two in energy levels and strengths with local strengt
fluctuations following the Porter-Thomas lavij ) there is a

significant unitary group decomposition of the hamiltonian.

With EGOE(1+2), the NPC andy take Gaussian forms as

PHYSICAL REVIEW E 64 016219

m—1
V[°]'1=m2i Zin; §i=; (Vijij =V,

\/[01.2— \/[0] _\/[01.0__y/[0].1 (A2)

pSimilarly, the h(1) operator will haver=0,1 parts; h°

=me® where e®=(N) 713, andh(1)=3,e'n; where e
=¢,— €°. Finally it is to be noted tha¥ behaves essentially
as av=2 operatorthe v=1 part ofV is of negligible size in

a function of the excitation energy and they are defined byhe N>m=1 limit).

the bivariate correlation coefficient which measures the
variance of the distribution of centroids &f(E)’s relative

The U(N) norm (in the m-particle spacesof an operator
O is defined by||O||m=V{(O—(OY™MT(O-({O)™)™. An

to the state-density variance. Theory for incorporating corimportant theorem is that the=0,1,2 parts ofH are or-

rections due to fluctuations in the variancesith k) of
F«(E) is also given. For small, the present formulation
gives back the results for pure EG@E[i.e., in theN —x
limit of EGOE(1+2)] as derived inf21] recently. The for-
mulas derived for NPC ant}, are subjected to numerical
EGOE(1+2) tests with{ changing from 0.1 to 0.8. These

thogonal with respect to thid (N) norm. For av=1 opera-
tor O(1)=Z=,e;n;, the norm square is simply given by

and the analysis of the results for a EGQES example and Similarly for a »v=2 operator®(2)
some nuclear shell-model examples, clearly point out that '

isolated finite realistic interacting particle systems, in the

chaotic domain X=N\g,), will have wave-function structure

as given by EGOE(%2). Finally, in the theory given by
Egs.(4) and(6), NPC andl, depend on just one parameter
and this appears to be an aspect of “geometric chagse
[23] for a recent discussion on geometric chaos
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APPENDIX

Let us consider a system oh fermions in N single-
particle states with a1+2)-body Hamiltonian H=h(1)
+V(2) whereh(1) is specified by the single-particle ener-
gies g [with i denoting theith single-particle stateh(1)
=3,¢ Nn; wheren; are number operatofgnd V(2) by the
two-body matrix elementsV;;, =(kl|V(2)[ij). The two-
body interaction can be seperated iM@®)= V% +V where
VI® is given by

V[O]:E V,J”n,n] (Al)
i<j

The h(1)+ V! generates th&(E) centroidsE,. With N
single-particle states, there i< {N) group generated by the
N2 operatorsa;raj wherea anda; are one-particle creation

and destruction operators, respectively. With respect to thi

U(N) group, VIl decomposes inte=0,1,2 parts and their
explicit structure igfor a givenm),

m
[01,0—
vero- |

2_m(N—m) )
||C’)(l)||m—m2i er. (A3)
2_m(m—l)(N—m)(N—m—l)
(A4)

Using Egs.(A3) and (A4) one can calculate the norms of
h+ VI and VI92 and in general the later is very small
compared to the former. Them(1)+ VI —h=3&n;
where¢;= ei1+(m— 1/N—2)¢; (note that at the end we add
the spectrum centroid generating paft- VI°'° to h). Thus,
neglecting thev[®!? part, the centroids of (E)’s are gen-
erated byh and the variances by. As h andV are orthogo-
nal, o3 = o2+ o2. These variances, im-particle spaces, fol-
low easily from Eqs.(A3) and (A4). See[1,24] for further
details.

Let us consider a EGOE(2) HamiltonianH=«ah(1)
+AV(2) with unit spacing between thg’s and theV;
taken as zero-centered Gaussian variables with unit variance.
In the N>>m>>1 situation one can study the behavior of
[? and (0?) as follows. The correlation coefficienf?
=o?lo? and, neglecting the contributions ¥(2) to oy,
one getsoi~(MmN?/12)a?. Similarly, o2~ (F)(Y)\2. Here,
Egs. (A3) and (A4) are used. Therefore,(?>=[(1
+3m (M a)?] ! and this expression gives 0.51 and 0.76 for
thea=0.5 and 1 cases in Fig. 2. They compare well with the
exact numbers given in Fig. 2. However, this estimate fails in
the situationa—0. For =0, theh has to be replaced by
VI% and then thé&, energies are a sum of'( zero-centered
Gaussian variables each with varianké. This, together
with the o2 expression, gives®~ (3) ~* for a~0 as pointed
dut in[21]. The number quoted for the=0 case in Fig. 2 is
close to this estimate. Finally, an estimate fos0?)/ 021>
is obtained from Eq(A4) by noting thato? is a sum ofK
~(M () x?-variables and thereforg(60?)/03]?=2/K as
given first in[12]. Then,o3=(1—¢?)o? gives the final re-
sult[(80?)/of1?~2(1- 3 (5) (3).
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